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Measuring large-scale structure
from redshift surveys

By Alexander S. Szalay
Department of Physics and Astronomy, The Johns Hopkins University,

Baltimore, MD 21218, USA

Observations of the large-scale distributions of galaxies in the universe indicate the
presence of very large wall-like superclusters. In their distributions there is growing
evidence that there is a characteristic scale in excess of 100 h−1 Mpc. This scale is
rather interesting since it is too small to be well measured from fluctuations in the
cosmic microwave background, but at the same time is large enough to be easily
sampled in current redshift surveys. There are several physical processes in the uni-
verse at around recombination (equality of matter and radiation, the sound horizon,
the recombination) that may have left an imprint on the fluctuation spectrum even
in the galaxy distribution. We discuss how ongoing large-scale redshift surveys may
be optimally analysed, via the Karhunen–Loève method, to provide high-precision
information on the fluctuations on these interesting scales. These large surveys are
the first where the dominant source of noise is systematic errors, requiring novel
techniques of statistical analysis.

Keywords: redshift surveys; large-scale structure; cosmology; power spectrum

1. Introduction

The study of large-scale structure is one of the most dynamically evolving areas of
astrophysics today. Cosmology and large-scale structure is growing into an accurate
science and requires correspondingly more sophisticated methods of analysis. Twenty
years ago the estimates of the fluctuation amplitude were about 10−3, almost a factor
of a hundred off of today’s measurements. Ten years ago we could only hope for high-
precision measurements of large-scale structure—there were less than 5000 redshifts
measured—and only a handful of normal galaxies with z > 1 were known. Computer
models of structure formation had just begun to consider non-power-law spectra
based on physical models like hot/cold dark matter. As a consequence there was
considerable freedom in adjusting parameters in the various galaxy-formation sce-
narios. In contrast, many of today’s debates are about factors of two, and soon we will
be arguing about 10% differences. The shape of the primordial fluctuation spectrum,
first derived from philosophical arguments (Harrison 1970; Zel’dovich 1972) can now
be quantified from detections of fluctuations in the cosmic microwave background
(CMB) made by COBE (Smoot et al . 1992). The number of available redshifts is
beyond 50 000, and soon we will have redshift surveys surpassing one million galax-
ies. N -body simulations are becoming more sophisticated, of higher resolution, and
incorporating complex gas dynamics.

The unprecedented number of new observations currently under way gives us hope
that over the next decade we will gain a clear understanding of the shape and evo-
lution of the primordial fluctuation spectrum, understand from first principles how
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galaxies were formed, and make quantitative comparisons and tests to differentiate
the various galaxy-formation scenarios. Up until now the CMB experiments have
measured fluctuations mostly on scales above 300 Mpc, where the shape is expected
to be primordial. Galaxy surveys were mostly sensitive to the regime below 100 Mpc,
where strong clustering evolution does leave a significant imprint on the spectrum.
The least known, and at the same time the most interesting part of the fluctuation
spectrum is on scales between 100 and 300 Mpc, close to the horizon scale at equality
and recombination, where we have the most reasons to believe that something may
have left a detectable imprint, like the Doppler peaks in the CMB fluctuations. In
the near future there is a good chance that this regime will be well studied by both
CMB experiments and redshift surveys.

2. Quantifying large-scale structure

(a) Key questions

Structure in the universe evolves from the initially small primordial fluctuations.
These fluctuations can arise during an inflationary expansion or come from topo-
logical defects later. They grow in amplitude, due to gravitational instability, and
the shape of the fluctuation spectrum is altered by different physical processes. The
nature of the dark matter, whether hot or cold, believed to dominate the mass den-
sity of the universe, determines the shape of the power spectrum on small (less than
100 Mpc) scales. On the other hand, the shape of the large-scale part of the fluctu-
ations (greater than 300 Mpc) remains remarkably unchanged, because no scale in
the evolutionary process becomes this large.

The COBE measurements constrain both the amplitude and the initial spectrum
of the fluctuations in this regime, and demonstrate extremely good agreement (n =
1.1±0.4, Gorski et al . (1994)) with the Harrison–Zel’dovich predictions of P (k) = kn,
with n = 1. These fluctuations are due to differences in the gravitational potential at
the surface of last scattering (Sachs & Wolfe 1967), reflecting the state of the universe
at a redshift of ca. 1000. Galaxy surveys (at z < 0.3) are rapidly increasing in size,
thus providing increasingly better measurements of the fluctuations on small scales
(CfA slices (Geller & Huchra 1989); IRAS (Saunders et al . 1991); APM (Maddox et
al . 1990); APM redshift surveys (Loveday et al . 1992); LasCampanas (Shectman et
al . 1996)). One can use theoretical scenarios to evolve and extrapolate the large-scale
CMB measurements into the structure of the local universe, but the two regimes do
not yet overlap directly.

Currently, the most popular scenario is the cold dark matter dominated universe,
where most of the mass is dark, interacting only via gravity, consisting of particles
of such a large mass that their thermal motion is negligible. To match the observed
clustering of galaxies without producing too large a velocity dispersion, the concept
of ‘biasing’ has been invoked (Kaiser 1984; Bardeen et al . 1986): mass is converted
into light only at the densest regions in the universe, creating a luminous compo-
nent more clustered than the mass. This scenario, modulo a properly chosen initial
normalization, has been remarkably successful over the past 12 years.

The COBE measurements create a conflict with the minimal biased CDM model:
if a Harrison–Zel’dovich spectrum is assumed and the normalization is locked to
COBE, then the biasing parameter must be unity to match the small-scale part of the
fluctuation spectrum, leading to very large small-scale velocities. Several alternative
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Measuring large-scale structure from redshift surveys 119

models have been rapidly suggested. Gravity waves, which decay with time, may
contribute to the largest scale modes observed by COBE and produce a ‘tilt’ of
the spectrum (Davis et al . 1992). Alternative scenarios invoke a large cosmological
constant (Kofman et al . 1993) or a Hubble constant as low as 30 km s−1 Mpc−1

(Bartlett et al . 1995). A mixture of cold and hot dark matter would also help,
because the growth of fluctuations on small scales would be retarded due to the
presence of a hot component with Ων ≈ 0.2 (Klypin et al . 1993).

(b) Power on COBE scales

What are the most important measurements we can make in order to differentiate
between proposed models? Overlap between scales probed by CMB experiments and
redshift surveys in the ‘local’ universe would place strong constraints on the power
spectrum. While the CMB experiments measure the fluctuations at the surface of last
scattering, redshift surveys measure the fluctuations today; thus their combination is
sensitive to the total fluctuation growth since recombination. The power spectrum on
scales of 200–500 Mpc from both redshift surveys and CMB would also tell us whether
the gravity wave/tilted model is correct, measure the bias factor, and determine the
shape of the spectrum on scales where most of today’s models differ but which are
too small for COBE and beyond the scale of current galaxy measurements. For the
same reason, many CMB experiments are probing 1–2◦ scales, corresponding to a
co-moving scale of about 120 Mpc.

In the next sections we outline how novel statistical techniques that we are cur-
rently developing will bring this goal within reach, using galaxy redshift surveys.
The combination of the two types of measurements will reveal unprecedented details
about the fluctuation spectrum. However, current power-spectrum estimation tech-
niques are optimized to compensate for shot noise, while the dominant sources of
errors at this point will no longer be statistical, but rather dominated by systemat-
ics. Our proposed power-spectrum analysis technique has been designed with this in
mind.

(c) Observing walls

Several surveys have now found evidence for sharp wall-like structures in the uni-
verse. The existence of such features is by no means unexpected. Zel’dovich (1970)
predicted that the generic features in a pressure-free gravitational collapse will be
highly flattened ‘pancakes’. Observational confirmation took a few years, Chincarini
& Rood (1976), and Gregory & Thompson (1978) identified the excess of galaxies
between Coma and A1367 with a supercluster, resembling a ‘pancake’.

Kirshner et al . (1983) identified the first big ‘void’ in the galaxy distribution. A
major breakthrough in our understanding of large-scale structure came from the
CfA ‘slice’ by deLapparent et al . (1986), 6◦ wide in declination but over 100◦ in
right ascension. At a radial distance of 70 h−1 Mpc a distinct pattern appears: a
‘great wall’ containing hundreds of galaxies, connecting several of the known Abell
clusters. Its transverse spatial extent exceeds 100 by 50 h−1 Mpc. The general trend
has been summarized by Geller & Huchra (1989): ‘all surveys have detected structures
as large as they could . . . .’

If the universe were full of ‘great walls’, i.e. if they are typical of the very-large-
scale structure, one can get an estimate of what a ‘fair sample’ would consist of
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(a)

'us' 'great wall'

 

(b)

Figure 1. The redshift distribution of galaxies in the BEKS survey, comprised of two narrow
pencil beams towards the galactic poles: (a) the histogram of all galaxies; (b) the one-dimensional
power spectrum (P (k) = |δ(k)|2, r = 1000/k Mpc. The big spike corresponds to the co-moving
scale of 128 h−1 Mpc. Wavenumbers are in units of k = 1000/λ h−1 Mpc−1.

from the surface density of galaxies. If we assume that the fraction of all bright
galaxies, ca. f = 0.5, is on these surfaces, with the surface density of galaxies as
µ = 0.4h2 Mpc−2, we can estimate the characteristic ‘cell’ size by requiring that the
corresponding ‘local’ volume density of bright galaxies, n = 0.02 galaxies h3 Mpc−3,
be approximately reproduced. Assuming spherical bubbles, and counting only half of
the surface area, since the walls separate two volumes, the typical size of the voids is
λ = 2R = 3µ/nf = 120 h−1 Mpc. This gives us some idea of what cell sizes one can
expect in a universe dominated by ‘great walls’, derived solely from the observations.

Broadhurst et al . (1990, hereafter BEKS) published results from a redshift survey
in two opposite pencil beams. The angular diameter of the survey is 30′ and the depth
is about 0.5 in redshift, both at the North and South Galactic Poles. The combined
surveys have a joint length in excess of 2000 h−1 Mpc, considerably deeper than
any other previous survey. To compensate for the small physical size of the survey
at low redshifts, data from two bright surveys in almost the same directions were
used, resulting in a combined selection well approximated by a cylinder of constant
co-moving radius.

The northern pencil beam is in the CfA slice, and one can find the ‘great wall’
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Measuring large-scale structure from redshift surveys 121

without much difficulty. Surprisingly, however, at very large radial distances one still
cannot see a homogeneous distribution, rather most galaxies are in a few large ‘spikes’
along the line of sight, separated typically by more than 100 h−1 Mpc. The simplest
explanation was that further ‘walls’ were found, meaning that the ‘great wall’ is by
no means unique, and that these structures contain a large percentage (ca. 50%) of
the galaxies.

(d) Observing bumps

Even more surprising was the fact that in the one-dimensional Fourier transform
of the redshift distribution, a highly significant peak was found at the wavelength
of 128 h−1 Mpc, with a probability of P < 3 × 10−4. This observation prompted
many debates, and even more exotic theories. The main question was, of course,
whether the peak in the Fourier spectrum is just a random accident, or does this
scale arise as a result of a physical process? Extending the BEKS survey to nine
pencil beams, randomly distributed over a 6◦ × 6◦ region at both galactic poles, it
was shown that the cross-correlation signal stays strong up to about 60 h−1 Mpc
transverse separation (Broadhurst et al . 1995), indicating that the redshift spikes
are indeed ‘great wall’-like structures, also that the power spectrum peak was not
due to a random alignment of small groups.

Several years later bigger redshift surveys became available. The Las Campanas
survey (Shectman et al . 1996), consisting of six slices of 450 h−1 Mpc depth, found
evidence for statistically significant excess power on 100 h−1 Mpc scales (Landy et
al . 1996). A similar slice near the South Galactic Pole, the ESP project (Vettolani
et al . 1997), confirms the BEKS spikes in the overlap region. A recent survey of
the great attractor/Shapley concentration shows structure on 100 h−1 Mpc scales
(Proust 1999). Deeper surveys on the Keck telescope (Cohen et al . 1996), and the
CFRS (Lilly et al . 1995), found evidence for the existence of sharp walls at z = 1.
In the distribution of clusters, Tully et al . (1992), Guzzo et al . (1992) and recently
Einasto et al . (1997) have found a signature of a sharp spectral feature beyond
100 Mpc. Excess power on greater than 100 h−1 Mpc scales is present at even higher
redshifts in QSO absorption systems (Quashnock et al . 1996) and in galaxies (Steidel
et al . 1999). These high-redshift observations are extremely important—if the bumps
appear on the same co-moving scale at much earlier Hubble times, then there is a
built-in feature in the power spectrum! In any case, it is obvious now that there is
excess power just beyond 100 Mpc, but it is not clear what the precise shape of this
feature in the power spectrum is.

3. Measuring structure beyond 100 Mpc

(a) Power spectrum

To estimate the power spectrum from a galaxy redshift survey, we must take
into account the sampling density (determined by the magnitude limit) and geom-
etry of the survey (determined by the angular coverage and depth). The sampling
process, and the fact that only integer numbers of galaxies can be counted, intro-
duces shot noise into the power spectrum (the noise per mode is constant and thus
easily subtracted, but contributes to the uncertainty). The observed power spec-
trum is a convolution of the true power with the Fourier transform of the spa-
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Figure 2. The redshift distribution of galaxies in the ESP survey, consisting of a slice at δ = −30◦.
(a) The histogram of all galaxies. The vertical lines indicate the location of the BEKS spikes.
(b) A wedge diagram of the actual redshifts.

tial window function of the survey (W (x) = 1 inside the survey and 0 outside),
Pobs(k) =

∫
Ptrue(k′)|W (k − k′)|2 d3k′. One can attempt to deconvolve the true

power spectrum or compare it with convolved theoretical spectra, but in either case
the survey geometry limits both the resolution and the largest wavelength for which
an accurate measurement can be obtained.

The standard methods for power spectrum estimation (see, for example, Park et al .
1994; Feldman et al . 1994; Fisher et al . 1993) work reasonably well for data in a large
contiguous three-dimensional volume with homogeneous sampling of the galaxy dis-
tribution. The weighting scheme is optimized for shot-noise-dominated errors. Using
these techniques, nearby wide-angle redshift surveys (CfA, SSRS, IRAS 1.2, QDOT)
yield strong constraints on the power spectrum on scales up to 100 h−1 Mpc. Because
the uncertainty in the power spectrum depends on the number of independent cells
of a given wavelength that we sample, constraints on larger scales require deeper
surveys. Due to the difficulty of obtaining redshifts for fainter galaxies and limited

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Measuring large-scale structure from redshift surveys 123

(a) (b)

Figure 3. Two simple realizations of a two-dimensional universe with identical second-order
statistical properties: (a) a two-dimensional Voronoi foam generated by the median surfaces
between Poisson ‘seeds’ at a mean separation of 100 Mpc. In this simple toy model, galaxies
reside only on the walls of the smoothed foam, so the walls have a finite thickness. The structure
has a well-defined second-order statistic, but also has well-correlated phases. This picture has
been Fourier transformed, all the phases randomized, then transformed back again. The result
is shown in (b) with the same second-order properties, but with a Gaussian distribution. It is
easy to see that placing well-sampled pencil beams across both surveys will easily distinguish
between the two, whereas a sparse sample drawn from the two realizations cannot differentiate.

telescope time, deep redshift surveys typically have complex geometry, e.g. deep
pencil beams or slices.

However, the standard methods are not efficient when applied to data in oddly
shaped and/or disjoint volumes, or when the sampling density of galaxies varies
greatly over these regions. Systematic effects, like extinction or calibration zero points
can substantially contribute to the errors. Convolution of the true power with the
complex window function causes power in different modes to be highly coupled.
In other words, plane waves do not form an optimal eigenbasis for expansion of
the galaxy density field sampled by redshift surveys. We desire methods for power-
spectrum estimation that optimally weight the data in each region of the survey,
taking into account our prior knowledge of the nature of the noise and clustering
in the galaxy distribution. A detailed comparison of all available power-spectrum
estimation methods is given in Tegmark et al . (1998). There are several contami-
nating effects, like aliasing from non-spherical survey geometries, extinction, redshift
distortions, nonlinear fluctuation growth, etc. In the section below, we outline how
to create an analysis tool that goes considerably beyond the present state of the art,
and can take all these effects into consideration.

(b) Walls and sampling effects

If fluctuations in the universe are strictly Gaussian, their full statistical description
is contained in the two-point correlation function or in its Fourier transform, the
power spectrum. The phases of the individual Fourier components are random for
such a process, and all high-order measures of clustering vanish. Averaging over an
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infinite number of finite-size realizations, the correct power spectrum is recovered. On
the other hand, if there is a network of sharp ‘walls’ present, they are manifested as a
set of sharp ‘spikes’ in Fourier space. These sharp spikes will vary from realization to
realization, and in an ensemble average they will converge to the underlying power
spectrum. Even though both scenarios converge to the true power spectrum in the
infinite limit, it is much harder to tell from a small number of observations whether
the detected sharp Fourier spikes are a genuine part of P (k) or if they are due to
the nonlinearities of the walls. The sampling rate will also dramatically affect how
well sharp peaks can be measured. This is why well-sampled pencil beams may yield
seemingly quite different results for the statistics of power-spectrum amplitudes than
wide-angle sparsely sampled surveys. If there are even weak nonlinearities present in
the density, their effect on the power spectrum is quite surprising (Amendola 1994):
rare ‘hotspots’, high and narrow peaks, will emerge in every realization of the power
spectrum. It is possible that the current physical scale of the k-space bumps does not
exactly coincide with the broader peak of the ensemble-averaged power spectrum.

4. The Karhunen–Loève transform

One can find an optimal set of spatial filters to probe the density fluctuations. Rather
than directly compute the Fourier transform of the distribution of objects, we expand
the observed density field in the natural orthonormal basis determined for each survey
from our prior knowledge of the survey geometry, selection function and clustering of
galaxies, and find the most likely power-spectrum model in a Bayesian fashion (Voge-
ley & Szalay 1996). Expansion of the observed density field in this basis is known as
the Karhunen–Loève (KL) transform (see, for example, Therrien 1992). Dividing the
survey volume into cells Vi, we compute the correlation matrix of expected counts
as

Cij = 〈NiNj〉 = 〈Ni〉〈Nj〉(1 + 〈ξij〉) + δij〈Ni〉+ ηij ,

where δij = 0 for i 6= j, Ni is the galaxy count in the ith cell, ηij is additional noise
arising from systematic effects and

〈ξij〉 =
1

ViVj

∫
ξ(xi − xj) dVi dVj .

We compute ξ from a model, which is our null hypothesis. The eigenvectors Ψj that
diagonalize the correlation matrix are the signal-to-noise eigenfunctions of the den-
sity field of the survey (solving the equation C · Ψj = λjΨj). The eigenvectors have
a very simple physical meaning: they contain the optimal weight of a given cell asso-
ciated with each mode. This weight—via the matrix diagonalization—automatically
considers all the different sources of errors, incorporated in the shot-noise term, and
η, and the asymmetric geometry of the survey, then computes the optimal weight
for each cell and each mode. The eigenvalues represent the statistical information
content of the given mode. One can also see that, by ranking the modes by decreas-
ing eigenvalues, the list begins with the modes containing large-scale power. The
eigenvectors of larger rank mostly describe shot noise.

We expand the observed counts in this orthonormal basis Ni = BjΨij (Einstein
summation convention), which defines the transform Bj = Ψ ijNi. Sorting these
functions by decreasing eigenvalue λ yields the set of eigenfunctions in order of
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Figure 4. The figure shows the first 12 density eigenmodes for the geometry, selection function
and correlation function of the first CfA slice (deLapparent et al . 1986). Each of these eigenmodes
samples a narrow range of Fourier wavemodes.

decreasing signal to noise. Because the Bj are statistically orthogonal and because
we can easily compute the expectation value and variance of the power per eigenmode
for any power-spectrum model

〈B2
j 〉 = Ψ−1

j ·Cmodel · Ψj ,
hypothesis testing is a straightforward process. Note that this method requires an
initial guess at the power spectrum, but the form of the eigenfunctions does not
depend sensitively on this assumption, and we can easily iterate the process. Sum-
marizing the main features, the KL transform automatically determines the ‘correla-
tion eigenmodes’ of a complex survey geometry, each optimally weighted to measure
power on a certain scale. The expansion of the density field in terms of these modes
still contains phase information, and the modes are orthogonal and independent, and
thus statistical hypothesis testing is quite easy. What are the problems where further
improvements are necessary? These will be discussed in the next sections, and we
will outline the way these aspects can be improved.

(a) Adaptive pixelization

The method in its present form requires a pixelization, which was assumed to be
given. By changing to smaller cells, the resolution is increasing, but at the cost of
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Figure 5. The figure shows the expected power per mode, 〈B2
n〉, of the KL transform analogous

to the power spectrum of the Fourier expansion. The highest curve is the total power per mode,
the sum of the true clustering power, shot noise, and the mean density. The component at the
low wavenumbers is highly suppressed and is the contribution from the mean density, entering
through aliasing via the side-lobes of the respective modes. The relatively flat component is the
shot-noise contribution; it has a slight variation, since the cell sizes are not quite identical. The
remaining component is the cosmological fluctuation spectrum, dominating the signal out to
quite large wavenumbers.

a bigger matrix. At the same time figure 5 shows that the largest eigenvalues carry
most of the clustering signal; most of the higher-ranked eigenvectors deal with the
representation of the shot noise. Let us start out with a coarse grid, and compute the
eigenvalues and eigenvectors. Next, we subdivide each cell into two halves. This can
be considered as a perturbation on the eigensystem, just like the level splitting of
the H atom in an external magnetic field. The resulting eigenvalues and eigenvectors
can be computed from perturbation theory. If we are only interested in the first few
thousand eigenvectors, we can set an accuracy threshold, beyond which we do not
subdivide the cells any further. This threshold should be set to the sum of the first
M eigenvalues. This technique will automatically guarantee the coarsest pixelization
that is still within our required error bounds. The sensitivity of the eigensystem with
respect to splitting individual cells can also be computed this way.

(b) Diagonalizing large matrices

Since the standard techniques of matrix diagonalization (SVD, Jacobi, Gauss–
Seidel) are typically proportional to N3, where the matrix is N × N , computation
times start to become prohibitive beyond matrix sizes of N > 8000. On the other
hand, there is an algorithm, developed by C. Lanczos in the 1920s, that is widely
used in various areas of computational physics, like nuclear physics and QCD to
diagonalize matrices several million in size. The technique can compute an approxi-
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mation to the first M eigenvalues and eigenvectors of large matrices, with a saving of
over a factor of a hundred in CPU time. A variant of this technique can also be used
at the likelihood computation stage, where we calculate directly the (approximate)
scalar product of the data vectors with a hypothesis matrix.

(c) Redshift space distortions

The pixelization will occur in redshift space, thus the computation of the cor-
relation matrix has to be done in redshift space. On large scales the effects from
the thermal motion of galaxies (‘fingers of God’) are negligible, but the linear infall
effects can be considerable. At the same time, the distribution of angles between
lines of sight depends on the survey geometry; redshift distortions are greatest in
pencil beams, smaller in slices, and even smaller, but non-negligible, in wide-angle
surveys. Most of the simple results for redshift distortions have been computed using
the plane-parallel approximation (Kaiser 1986; Hamilton 1992), where the lines of
sight to the two galaxies are close to each other. In a general wide-angle survey this is
not the case, and explicit expressions are needed for the redshift space correlations.
A numerical computation has been done by Zaroubi & Hoffman (1996) and recently
a simple analytic expression has been obtained by Szalay et al . (1999) for cells with
an arbitrary angle between the lines of sight, just what is needed here. We will use
this expression to compute the KL correlation matrix. Our prior model will incorpo-
rate the usual parameter β = Ω0.6/b, connecting density perturbations to peculiar
velocities. This also means that in our parameter estimation not only the shape of
the real-space power spectrum, but also β are simultaneously recovered.

(d) Applying inverse nonlinear corrections

The power spectrum is affected by the growth of fluctuations due to gravity. For
fully linear growth, the shape of the spectrum remains unchanged; only its ampli-
tude varies with time. On the other hand, the amplitude of fluctuations today is such
that the scale of nonlinearity knl = 0.125 h Mpc−1, only a factor of two away from
k = 2π/100 Mpc = 0.063 h Mpc−1. This means that mildly nonlinear effects will
modify the shape of the spectrum even in this regime, given the high accuracy we
seek with our method. For a long time only N -body simulations provided a solution.
Recently, Jain et al . (1995) and Peacock & Dodds (1996) provided a simple semi-
analytic expression, using the effective spectral index neff , to compute the nonlinear
shape of the power spectrum. It is straightforward to compute the inverse expres-
sions for the power spectrum, which will enable us to go from the mildly nonlinear
estimated spectrum to the linear power spectrum, to be compared with the CMB
measurements.

(e) Including systematic effects

There are various systematic effects, which can easily become the dominant source
of error for the next-generation surveys. These include zero-point errors in the pho-
tometric calibrations, which are typically done over fields several degrees in size, all
the way to every fourth of the 6◦ plates in the APM survey. A zero-point error causes
a correlated shift in every magnitude; thus in certain areas of the sky the survey goes
deeper. A similar large angular scale error can be caused by the galactic extinction,
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which is quite clumpy and can be several tenths of a magnitude. As the selection
function starts to fall steeply, these effects modulate the outer edges of the sur-
vey, resulting in mock large-scale features in the power spectrum. On scales beyond
200 h−1 Mpc this is a huge effect (Vogeley & Connolly 1999). One can compensate
by correcting with an extinction map, but still the errors in the galaxy counts in
cells at the same part of the sky will be correlated. This can be taken into account
by an additional variance to the affected cells in the KL correlation matrix, which
will effectively down-weight these cells.

Similarly, constraints from a fixed number of fibres in a given patch of the sky (like
in the LCRS) can be considered by using an increased multivariate variance instead
of Poisson, for the cells along the same line of sight, since the sum of the galaxies
must add up to the total number of fibres! Data from different surveys with differing
systematics can also be easily combined into a common analysis. These and many
other effects can be taken into account in a simple fashion in the KL framework and
are impossible to incorporate into any other algorithm currently available.

(f ) Using gappy data

As redshift surveys are under way, the sky coverage is incomplete, containing gaps,
only N ′ cells out of a total N , even though in the end there will be a contiguous area.
Since we are interested in large-scale structure, we can (and will) use a truncated KL
basis for our analysis, consisting of a certain number M < N ′ < N of eigenvectors.
Let us assume that we built our KL basis for the whole survey, including also the
cells where redshift have not yet been measured (or maybe never will be). In order to
determine the expansion coefficients on the truncated basis we need to estimate M
numbers, based on N ′ measurements. This is trivial, and as a result we obtain smooth
information about galaxy counts in all N cells, even where no data were available.
This represents an optimal extrapolation over gappy areas and also enables us to
perform analysis of incomplete redshift surveys while they are in progress.

(g) Parameter estimation: hypothesis testing

The KL transform represents a useful mapping of the data into a set of orthogo-
nal expansion coefficients, which make hypothesis testing quite convenient. On the
other hand, when we try to estimate certain parameters, not all modes contain the
same information. For example, in the estimation of β, the radial KL modes will be
quite sensitive to the value of β, unlike the transverse modes. How can one create
the optimal combination of modes for a particular set of parameters? The Fisher
information matrix, the Hessian of the log-likelihood with respect to the parameters
of interest, tells us the quantitative relevance of the various modes (Vogeley & Szalay
1996). The practical ways of combining the various KL modes are described in detail
in Tegmark et al . (1998).

5. Are primordial sound waves the source of the bumps?

Here we would like to discuss how such 100 h−1 Mpc bumps can arise in the power
spectrum. It has been understood for a long time (Peebles 1968; Sunyaev & Zel’dovich
1970) that around recombination due to the high pressure in the photon–baryon
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plasma, fluctuations oscillate like sound waves. On smaller wavelengths, these oscil-
lations damp, but on larger scales, near the horizon scale at recombinations, they
may survive longer. The motion of baryons due to these sound waves gives rise to
the Doppler peaks in the CMB fluctuations. At the same time it was understood
early on that after recombination, as the sound speed approaches zero, different
sound waves transform into a different mix of growing and decaying modes, depend-
ing on the actual phases of the waves. An ‘interference pattern’ may emerge, the
so-called Sakharov oscillations (Sakharov 1966). Sound waves that go entirely into
growing mode are amplified, others with opposite phases will cancel (Hu & Sugiyama
1996). Since the horizon scale at recombination is very close to the regime of interest
(between 100–200 h−1 Mpc, depending on Ω0h), it is worth considering what it takes
for these sound waves to have an appreciable effect on not only the CMB but on the
galaxy distribution!

Since galaxy clustering is only affected by gravity, the fluctuations in the baryons
due to the sound waves need to leave an imprint in the gravitational potential. This
requires as high a baryon fraction as possible. How high can this number be? From
observations of the primordial deuterium (Tytler 1997), the 1σ limit, ΩB h2 6 0.025,
can be combined with reasonably low estimates of the Hubble constant, and values
of ΩB ≈ 0.1 are not unimaginable. At the same time, in order for a large imprint, Ωt
has to be low, in the range of Ωt ≈ 0.3. Given the faint number counts of galaxies,
this is no longer an outrageous idea.

(a) Linear theory

Recent linear calculations of Eisenstein & Hu (1998) provide analytic approxima-
tions for the shape of the transfer function in the parameter range, when ΩB is a
substantial fraction of Ω◦. These transfer functions have been applied by Eisenstein
et al . (1998) in an attempt to explain the existing bumps in the power spectrum
based upon a fully linear calculation. The results are intriguing: they indicate that
for a reasonable choice of the parameters it is difficult to associate the first acoustic
peak directly with the observed bump in the power spectrum. There is still some
freedom in adjusting the precise value of the Hubble constant h, or giving a small
blue tilt to the spectrum, although the available range in these parameters is becom-
ing smaller every year. There are several caveats though, mostly related to how well
the current redshift surveys sample k-space and what effect nonlinearities can have
on the bumps.

(b) Nonlinear enhancements

There are also several other amplification mechanisms at work. The surveys mea-
sure the distribution of galaxies, while the above calculations refer to the linear
fluctuations in all the mass. First of all, the formation of the walls is a highly nonlin-
ear process, which will amplify fluctuations if there is a distinct scale associated with
them. Second, the galaxy surveys are analysed in redshift space; thus infall on to the
walls will enhance these structures and will result in a further amplification. This
effect will depend on the survey geometry: it is very important for pencil beams, less
so for slices and spherical volumes. Even in the Las Campanas survey one can notice
that some of the walls curve to stay perpendicular to the line of sight—a consequence
of redshift space enhancements.
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The most important nonlinear phenomenon is the Zel’dovich displacement, due to
the coherent infall onto the ‘walls’. The expectation value of the infall velocity is the
ensemble average 〈ρvr〉, the density–velocity correlation function. The peak of this
integral is phase shifted from the peak of the correlation function. Expressing this
another way: characteristic scales in the Zel’dovich approximation tend to appear not
at the maximum of the power, but where the spectrum is steepest. We are currently
undertaking detailed analysis of these effects, including large-scale numerical simu-
lations using the Zel’dovich approximation with a high baryon transfer function and
large survey volumes. This should provide a final answer to whether this explanation
of the bumps is feasible. All other alternatives (isocurvature fluctuations, tilts) are
much less attractive, since they would require new physics on these large scales.

6. Conclusions

Over the next few years several new large-scale surveys will start producing data,
like the Sloan Digital Sky Survey and the 2dF (Colless, this issue). The analysis
techniques outlined here, based on the KL transform, combined with the new data-
set, could result in major new developments in understanding the nature of the
fluctuations on scales over 100 Mpc. They can measure the shape of the fluctuation
spectrum in an overlap region with COBE. The method is capable of including
systematic effects, redshift distortions and incompletenesses in the data, representing
considerable improvements over current state of the art techniques.

Several observations are pointing to excess power on 100–130 h−1 Mpc scales,
which manifests itself in a small number of sharp spikes in Fourier space. These
reflect the presence of walls and voids on similar scales. The emergence of this co-
moving scale at high redshift implies that this is imprinted on the fluctuations. Such
a scale occurs naturally at recombination. The Sakharov oscillations, remnants of
the sound waves at that epoch, may provide an intriguing explanation. In such sce-
narios the baryon content of the universe must be high, the Hubble constant low,
and the universe open. This family of models deserves further investigation, and it
is just barely possible that the 100 Mpc bumps may be the first preview of the elu-
sive Doppler peaks—a fascinating preview of further connections between the galaxy
distribution and the CMB.
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